Bu çalışmada birbiri ile etkileşim halinde olan operasyonlardan oluşan montaj hattı sistemlerinde; Hatalı ürün sayısını azaltmak, kalitesizliği önlemek ve üretim süresini azaltmak için Yapay Sinir Ağları ile Hata Oranı Tahmini ve olasılıksal Hat Dengeleme yöntemi yapılmıştır. Hata oranı tahmini, mevcut hataları yerinde gidermek için iyileştirme çalışmasında hangi kot modellerinin uygulanması gerektiği hakkında bilgi verir. Levenberg–Marquardt Öğrenme Algoritması kullanılarak yapılan çalışmada deneysel tasarım yöntemiyle makine öğrenmesi belirlenmiştir. Aynı zamanda çok yönlü karar verme aşamalarında, tahmin ve hat dengeleme kısımlarında yapay zekâ algoritması olarak kullanılmıştır. Montaj Hattı Dengeleme ‘de, tahmin sonrası süreç iyileştirme etkisi ile dengesiz hattın yeniden dengelenmesi amaçlanmıştır. İşlem süreleri stokastik (değişken) ve istatistiksel veriler ve matematiksel algoritmalar (dijital algoritmalar oluşturulabilir) olduğu için Probabilistic Hat dengeleme yöntemi kullanılmıştır. Sonuçlar incelendiğinde seçilen iki farklı beş cepli kot pantolon modeli için başarılı bir tahmin süreci gerçekleştirilmiş ve olasılıksal hat dengeleme yönteminin iş bileşenlerinin iş istasyonlarına tam olarak atanmasını sağladığı ve güvenilir sonuçlar görülmüştür.
Prof. Dr. Kenan ÖZDEN
"İnsan evrende gövdesi kadar değil, yüreği kadar yer kaplar."
-Yaşar KEMAL -